It is currently 17 Dec 2018, 05:17
My Tests

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

|x-2| > 3

  Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:
2 KUDOS received
Moderator
Moderator
User avatar
Joined: 18 Apr 2015
Posts: 5200
Followers: 77

Kudos [?]: 1049 [2] , given: 4690

CAT Tests
|x-2| > 3 [#permalink] New post 17 Oct 2017, 14:00
2
This post received
KUDOS
Expert's post
00:00

Question Stats:

39% (01:05) correct 60% (01:10) wrong based on 89 sessions


\(|x-2| > 3\)

Quantity A
Quantity B
The minimum possible
value of |x - 3.5|
The minimum possible
value of | x - 1.5 |


A) Quantity A is greater.
B) Quantity B is greater.
C) The two quantities are equal.
D) The relationship cannot be determined from the information given.
[Reveal] Spoiler: OA

_________________

Get the 2 FREE GREPrepclub Tests

4 KUDOS received
Director
Director
Joined: 03 Sep 2017
Posts: 521
Followers: 1

Kudos [?]: 333 [4] , given: 66

Re: |x-2| > 3 [#permalink] New post 18 Oct 2017, 05:01
4
This post received
KUDOS
Solving the disequality in the header, \(|x-2|>3\), we get \(x<-1, x>5\).

Then, the smallest value for \(|x-3.5|\) is when x = 5, i.e. \(|5-3.5| = 1.5\). The smallest value for \(|x-1.5|\) is when x = -1, i.e. \(|-1-1.5| = 2.5\).

Thus, since 2.5>1.5, quantity B is greater!
Intern
Intern
Joined: 11 Jan 2018
Posts: 44
Followers: 0

Kudos [?]: 26 [0], given: 7

Re: |x-2| > 3 [#permalink] New post 28 Feb 2018, 14:10
IlCreatore wrote:
Solving the disequality in the header, \(|x-2|>3\), we get \(x<-1, x>5\).

Then, the smallest value for \(|x-3.5|\) is when x = 5, i.e. \(|5-3.5| = 1.5\). The smallest value for \(|x-1.5|\) is when x = -1, i.e. \(|-1-1.5| = 2.5\).

Thus, since 2.5>1.5, quantity B is greater!

Correct Explanation.
Giving 1 kudos.
_________________

Persistence >>>>>>> Success

Don't say thanks, just give KUDOS.
1 kudos = 1000 Thanks

Manager
Manager
User avatar
Joined: 26 Jun 2017
Posts: 104
Followers: 0

Kudos [?]: 38 [0], given: 38

Re: |x-2| > 3 [#permalink] New post 04 Mar 2018, 02:29
good question
_________________

What you think, you become.


Last edited by boxing506 on 15 Mar 2018, 23:26, edited 1 time in total.
Manager
Manager
Joined: 22 Feb 2018
Posts: 125
Followers: 2

Kudos [?]: 77 [0], given: 15

CAT Tests
Re: |x-2| > 3 [#permalink] New post 05 Mar 2018, 18:34
correct : C
|X -2 | > 3 means either x-2 > 3 or x-2< -3
so
x - 2 > 3 -> x > 5 or
x -2 < -3 -> x < -1
if the numbers are integers then we can't choose x =5 and x = -1 :
the minimum possible value of |x - 3.5 | is when x = 6, in this case |x-3.5| equals 2.5
the minimum possible value of |x - 1.5 | is when x = -1, in this case |x-3.5| equals 2.5 again
so considering numbers as integers these are equal.

_________________

Follow your heart

Supreme Moderator
Joined: 01 Nov 2017
Posts: 213
Followers: 3

Kudos [?]: 70 [0], given: 1

CAT Tests
Re: |x-2| > 3 [#permalink] New post 21 Oct 2018, 03:17
Expert's post
tigran wrote:
Why can't we put o as x at that time it will be the minimum value of x


0 is not a valid value for |x-2|>3....
Substitute x as 0... |0-2|=2 which is NOT greater than 3
_________________

Some useful Theory.
1. Arithmetic and Geometric progressions : https://greprepclub.com/forum/progressions-arithmetic-geometric-and-harmonic-11574.html#p27048
2. Effect of Arithmetic Operations on fraction : https://greprepclub.com/forum/effects-of-arithmetic-operations-on-fractions-11573.html?sid=d570445335a783891cd4d48a17db9825
3. Remainders : https://greprepclub.com/forum/remainders-what-you-should-know-11524.html
4. Number properties : https://greprepclub.com/forum/number-property-all-you-require-11518.html
5. Absolute Modulus and Inequalities : https://greprepclub.com/forum/absolute-modulus-a-better-understanding-11281.html

Intern
Intern
Joined: 01 Nov 2018
Posts: 7
Followers: 0

Kudos [?]: 6 [0], given: 0

Re: |x-2| > 3 [#permalink] New post 02 Nov 2018, 10:49
FatemehAsgarinejad wrote:
correct : C
|X -2 | > 3 means either x-2 > 3 or x-2< -3
so
x - 2 > 3 -> x > 5 or
x -2 < -3 -> x < -1
if the numbers are integers then we can't choose x =5 and x = -1 :
the minimum possible value of |x - 3.5 | is when x = 6, in this case |x-3.5| equals 2.5
the minimum possible value of |x - 1.5 | is when x = -1, in this case |x-3.5| equals 2.5 again
so considering numbers as integers these are equal.


nope.
"the minimum possible value of |x - 1.5 | is when x = -1, in this case |x-3.5| equals 2.5 again"

if x = -1, then |-1-3.5| = 4.5
Supreme Moderator
Joined: 01 Nov 2017
Posts: 213
Followers: 3

Kudos [?]: 70 [0], given: 1

CAT Tests
Re: |x-2| > 3 [#permalink] New post 07 Nov 2018, 22:15
Expert's post
Carcass wrote:


\(|x-2| > 3\)

Quantity A
Quantity B
The minimum possible
value of |x - 3.5|
The minimum possible
value of | x - 1.5 |


A) Quantity A is greater.
B) Quantity B is greater.
C) The two quantities are equal.
D) The relationship cannot be determined from the information given.


\(|x-2| > 3\)

we can find the values of x in three ways...

(I) Since both sides are positive, square both sides
\(|x-2|^2 > 3^2.......x^2-4x+4>9.........x^2-4x-5>0.....x^2-5x+x-5>0........(x+1)(x-5)>0\)
a) either both are positive.. x+1>0 and x-5>0, so x>-1 and x>5...x>5
b) or both are negative .. x+1<0 and x-5<0, so x<-1 and x<5 ... so x<-1
x<-1 and x>5

(II) critical point..
x<=2..... -(x-2)>3.......x-2<-3....x<-1
x>2...... (x-2)>3......x>5

(III) logical approach via number line..
\(|x-2| > 3\) means the distance of x from 2 is greater than 3 units..
so if x is on the left side of 2, it will be < (2-3) or <-1
if x is on the right side of 2, it will be > (2+30 or >5

you can learn more of this from
https://greprepclub.com/forum/absolute-modulus-a-better-understanding-11281.html

so we have range of x as x<-1 and x>5
The minimum possible value of |x - 3.5| ... again which value in range is closer to 3.5, it is 5, so value is just > |5-3.5| or just > 1.5
The minimum possible value of | x - 1.5 |... again which value in range is closer to 1.5, it is -1, so value is just > |-1-1.5| or just > 2.5
so B>A
_________________

Some useful Theory.
1. Arithmetic and Geometric progressions : https://greprepclub.com/forum/progressions-arithmetic-geometric-and-harmonic-11574.html#p27048
2. Effect of Arithmetic Operations on fraction : https://greprepclub.com/forum/effects-of-arithmetic-operations-on-fractions-11573.html?sid=d570445335a783891cd4d48a17db9825
3. Remainders : https://greprepclub.com/forum/remainders-what-you-should-know-11524.html
4. Number properties : https://greprepclub.com/forum/number-property-all-you-require-11518.html
5. Absolute Modulus and Inequalities : https://greprepclub.com/forum/absolute-modulus-a-better-understanding-11281.html

1 KUDOS received
Manager
Manager
Joined: 22 Feb 2018
Posts: 125
Followers: 2

Kudos [?]: 77 [1] , given: 15

CAT Tests
Re: |x-2| > 3 [#permalink] New post 27 Nov 2018, 11:40
1
This post received
KUDOS
Answer: B

3 < |x-2|

** If a < |b+c| Then a < (b+c) or (b+c) < -a
So we can conduct that:
3 < x-2 or (x-2) < -3
x > 5 or x < -1

A: The minimum possible value of |x-3.5|
First we should consider that an absolute value can’t be negative. At least it equals to 0.
We have x > 5 or x < -1
For x>5, |x-3.5| will be bigger than 1.5
For x<-1, |x-3.5| will be bigger than 4.5
So the minimum amount for A is 1.5

B: The minimum possible value of |x-1.5|
We have x > 5 or x < -1
For x>5, |x-1.5| will be bigger than 3
For x<-1, |x-1.5| will be bigger than 2.5
So the minimum amount for A is 2.5


So B is bigger than A.
_________________

Follow your heart

Intern
Intern
Joined: 10 Dec 2018
Posts: 1
Followers: 0

Kudos [?]: 0 [0], given: 0

Re: |x-2| > 3 [#permalink] New post 16 Dec 2018, 08:11
Can't we take any decimal value in the place of x? As it is not said that x is an integer?

Posted from my mobile device Image
Re: |x-2| > 3   [#permalink] 16 Dec 2018, 08:11
Display posts from previous: Sort by

|x-2| > 3

  Question banks Downloads My Bookmarks Reviews Important topics  


GRE Prep Club Forum Home| About| Terms and Conditions and Privacy Policy| GRE Prep Club Rules| Contact

Powered by phpBB © phpBB Group

Kindly note that the GRE® test is a registered trademark of the Educational Testing Service®, and this site has neither been reviewed nor endorsed by ETS®.