Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.
Customized for You
we will pick new questions that match your level based on your Timer History
Track Your Progress
every week, we’ll send you an estimated GRE score based on your performance
Practice Pays
we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:
Your score will improve and your results will be more realistic
Is there something wrong with our timer?Let us know!
School selection is a key component of Personal MBA Coach's services. Download our latest e-book to get an industry expert's insight on school selection and MBA rankings:
Re: Twelve runners enter a race to compete for first, second, an
[#permalink]
12 Jan 2018, 15:28
Expert Reply
Explanation
In this case, order matters, so you simply need to multiply the number of possible runners for each spot. That should look like this: \(12 \times 11 \times 10 = 1,320\).
_________________
Sandy If you found this post useful, please let me know by pressing the Kudos Button
ASIDE: I'm somewhat surprised that this official practice question is somewhat ambiguous. It suggests that the " winners" are the runners who finish first second or third.
Take the task of listing possible winners and break it into stages.
Stage 1: Select a runner to be first Since there are 12 runners to choose from, we can complete stage 1 in 12 ways
Stage 2: Select a runner to be second Since we already chose a first place runner in stage 1, there are 11 runners REMAINING to choose from. So we can complete stage 2 in 11 ways
Stage 3: Select a runner to be 3rd There are now 10 runners remaining, so we can complete stage 3 in 10 ways
By the Fundamental Counting Principle (FCP), we can complete all 3 stages (list the arrangements of winners) in (12)(11)(10) ways (= 1320 ways)
Answer: 1320
Note: the FCP can be used to solve the MAJORITY of counting questions on the GRE. So, be sure to learn it.
Re: Twelve runners enter a race to compete for first, second, an
[#permalink]
08 Apr 2021, 03:10
Hello from the GRE Prep Club BumpBot!
Thanks to another GRE Prep Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).
Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.