Nov 28 08:00 PM PST  09:00 PM PST Magoosh is excited to offer you a free GRE practice test with video answers and explanations. If you’re thinking about taking the GRE or want to see how effective your GRE test prep has been, pinpoint your strengths and weaknesses with this quiz! Nov 30 08:00 PM PST  09:00 PM PST Take 20% off the plan of your choice, now through midnight on 11/30 Dec 01 01:00 PM EST  02:00 PM EST Save up to 37% this weekend! $340.00 off our 6month Genius plan using promo code: GREBlackFridayGen $220.00 off our 3month Premium plan using promo code: GREBlackFridayPre Dec 02 07:30 AM PST  08:30 AM PST This webinar will focus on evaluating reading comprehension questions on the GRE and GMAT. This 60 minute class will be a mix of "presentation" and Q&A where students can get specific questions answered. Dec 04 10:00 PM PST  11:00 PM PST Regardless of whether you choose to study with Greenlight Test Prep, I believe you'll benefit from my many free resources. Dec 07 08:00 PM PST  09:00 PM PST This admissions guide will help you plan your best route to a PhD by helping you choose the best programs your goals, secure strong letters of recommendation, strengthen your candidacy, and apply successfully.
Author 
Message 
TAGS:


Retired Moderator
Joined: 07 Jun 2014
Posts: 4803
WE: Business Development (Energy and Utilities)
Followers: 175
Kudos [?]:
3036
[0], given: 394

sequence of numbers a1, a2, a3, . . . , an [#permalink]
04 Jan 2016, 06:20
Question Stats:
63% (02:25) correct
36% (02:02) wrong based on 128 sessions
The sequence of numbers \(a_1\), \(a_2\), \(a_3\), . . . , \(a_n\), . . . is defined by \(a_n\)\(= \frac{1}{n}  \frac{1}{(n+2)}\) for each integer \(n ≥ 1\). What is the sum of the first 20 terms of this sequence? A. \((1+\frac{1}{2})  \frac{1}{20}\) B. \((1+\frac{1}{2})  (\frac{1}{21}+\frac{1}{22})\) C. \(1  (\frac{1}{20}+\frac{1}{22})\) D. \(1  \frac{1}{22}\) E. \(\frac{1}{20}  \frac{1}{22}\) Practice Questions Question: 12 Page: 158 Difficulty: hard
_________________
Sandy If you found this post useful, please let me know by pressing the Kudos Button
Try our free Online GRE Test




Retired Moderator
Joined: 07 Jun 2014
Posts: 4803
WE: Business Development (Energy and Utilities)
Followers: 175
Kudos [?]:
3036
[2]
, given: 394

Re: sequence of numbers a1, a2, a3, . . . , an [#permalink]
04 Jan 2016, 08:40
2
This post received KUDOS
Here we have \(an= \frac{1}{n}  \frac{1}{(n+2)}\). The idea is to find a pattern in the sum \(a1= \frac{1}{1}  \frac{1}{3}\) \(a2= \frac{1}{2}  \frac{1}{4}\) \(a3= \frac{1}{3}  \frac{1}{5}\) \(a4= \frac{1}{4}  \frac{1}{6}\) Now we have the first term from a3 can cancels second term from previous numbers Now observing the last few terms... \(a18= \frac{1}{18}  \frac{1}{20}\) \(a19= \frac{1}{19}  \frac{1}{21}\) \(a20= \frac{1}{20}  \frac{1}{22}\) Now we have here the last two terms namely \(\frac{1}{21}\) and \(\frac{1}{22}\) are not cancelled. \((1+\frac{1}{2})  (\frac{1}{21}+\frac{1}{22})\) Hence the sum is
_________________
Sandy If you found this post useful, please let me know by pressing the Kudos Button
Try our free Online GRE Test



Intern
Joined: 28 Mar 2016
Posts: 11
Followers: 0
Kudos [?]:
3
[0], given: 0

Re: sequence of numbers a1, a2, a3, . . . , an [#permalink]
29 Mar 2016, 09:34
Now we have the first term from a3 can cancels second term from previous numbers ^^^ what do you mean by this exactly, like what exact numbers cancel?
does the sum of the first two cancel, or something else?



Intern
Joined: 12 Jul 2016
Posts: 8
Followers: 0
Kudos [?]:
5
[1]
, given: 11

Re: sequence of numbers a1, a2, a3, . . . , an [#permalink]
13 Jul 2016, 13:31
1
This post received KUDOS
sagnik242 wrote: Now we have the first term from a3 can cancels second term from previous numbers ^^^ what do you mean by this exactly, like what exact numbers cancel?
does the sum of the first two cancel, or something else? In the first set, you cancel both the 1/3, the 1/4, and the 1/5. You see the pattern now? This cancellation will continue until the last two terms (1/21 and 1/20 cannot be cancelled because n=20 is the limit). In the first set you are left with 1/1 and 1/2. By the second set there's only 1/21 and 1/22. You add the first set and subtract the second. (1/1 + 1/2)  (1/21 + 1/22).



GRE Instructor
Joined: 10 Apr 2015
Posts: 3907
Followers: 164
Kudos [?]:
4771
[5]
, given: 70

Re: sequence of numbers a1, a2, a3, . . . , an [#permalink]
09 Feb 2019, 08:17
5
This post received KUDOS
sandy wrote: The sequence of numbers a1, a2, a3, . . . , an, . . . is defined by \(an= \frac{1}{n}  \frac{1}{(n+2)}\) for each integer n ≥ 1. What is the sum of the first 20 terms of this sequence?
A. \((1+\frac{1}{2})  \frac{1}{20}\) B. \((1+\frac{1}{2})  (\frac{1}{21}+\frac{1}{22})\) C. \(1  (\frac{1}{20}+\frac{1}{22})\) D. \(1  \frac{1}{22}\) E. \(\frac{1}{20}  \frac{1}{22}\)
Applying the formula, we get: a1 = (1/1  1/3) a2 = (1/2  1/4) a3 = ( 1/3  1/5) a4 = ( 1/4  1/6) . . . . a17 = (1/17  1/19) a18 = (1/18  1/20) a19 = ( 1/19  1/21) a20 = ( 1/20  1/22) So, the SUM = (1/1  1/3) + (1/2  1/4) + (1/3  1/5) + (1/4  1/6) . . . (1/17  1/19) + (1/18  1/20) + (1/19  1/21) + (1/20  1/22)Notice that all of the SAME COLORED fractions cancel out. For example, (1/3) + 1/3 = 0The only fractions the DON'T get canceled out are those at the beginning and end of the sequence. So, SUM = 1/1 + 1/2  1/21  1/22We can rewrite this as: SUM = (1/1 + 1/2)  (1/21 + 1/22)Answer: B Cheers, Brent
_________________
Brent Hanneson – Creator of greenlighttestprep.com
Sign up for GRE Question of the Day emails




Re: sequence of numbers a1, a2, a3, . . . , an
[#permalink]
09 Feb 2019, 08:17





