Jul 08 07:30 AM PDT  08:30 AM PDT This webinar will focus on how to increase your accuracy using mental math on the quantitative section of the exam. Jul 09 10:00 PM PDT  11:00 PM PDT Don't make the 5 crucial mistakes many grad school applicants make. Download your free copy to learn the mistakes to avoid! Jul 10 08:00 PM PDT  09:00 PM PDT A REVOLUTIONARY ONDEMAND GRE PREP COURSE. Try it for $1 Jul 13 10:00 PM PDT  11:00 PM PDT Take 20% off the plan of your choice, now through midnight on 7/13 Jul 14 08:00 PM PDT  09:00 PM PDT A better GRE prep experience. We believe GRE prep should be real education that prepares you not just for the test, but for the challenges you’ll face as you earn your graduate degree and advance your career. Jul 15 08:00 PM PDT  09:00 PM PDT Regardless of whether you choose to study with Greenlight Test Prep, I believe you'll benefit from my many free resources.
Author 
Message 
TAGS:


Founder
Joined: 18 Apr 2015
Posts: 11974
Followers: 252
Kudos [?]:
2986
[1]
, given: 11233

In triangle ABC,AB = AC= 2. Which of the following could be [#permalink]
16 May 2017, 01:46
1
This post received KUDOS
Question Stats:
42% (01:02) correct
57% (01:40) wrong based on 108 sessions
In triangle ABC,AB = AC= 2. Which of the following could be the area of the triangle ABC ? Indicate all possible areas❑ 0.5 ❑ 1.0 ❑ 1.5 ❑ 2.0 ❑ 2.5 ❑ 3.0
_________________
Need Practice? 20 Free GRE Quant Tests available for free with 20 Kudos GRE Prep Club Members of the Month: Each member of the month will get three months free access of GRE Prep Club tests.




Director
Joined: 03 Sep 2017
Posts: 518
Followers: 2
Kudos [?]:
418
[4]
, given: 66

Re: In triangle ABC,AB = AC= 2. Which of the following could be [#permalink]
09 Oct 2017, 08:08
4
This post received KUDOS
This kind of question has to be answered using the range of areas a triangle can have given two sides.
The smallest triangle is the one with area slightly higher than 0 when the third side is so small that the triangle is shrank towards its base.
The largest triangle is the right triangle with legs equal to the two given sides, in this case 2 and 2.
Thus, the area range is \(0<Area\leq \frac{2*2}{2}\) or \(0<area\leq 2\).
The answers are A, B, C, D!



Intern
Joined: 06 Nov 2017
Posts: 1
Followers: 0
Kudos [?]:
0
[0], given: 0

Re: In triangle ABC,AB = AC= 2. Which of the following could be [#permalink]
26 Feb 2018, 09:24
IlCreatore wrote: This kind of question has to be answered using the range of areas a triangle can have given two sides.
The smallest triangle is the one with area slightly higher than 0 when the third side is so small that the triangle is shrank towards its base.
The largest triangle is the right triangle with legs equal to the two given sides, in this case 2 and 2.
Thus, the area range is \(0<Area\leq \frac{2*2}{2}\) or \(0<area\leq 2\).
The answers are A, B, C, D! Does the right triangle has the greatest area?? Can't the included angle be obtuse which would result in a larger area?



Founder
Joined: 18 Apr 2015
Posts: 11974
Followers: 252
Kudos [?]:
2986
[1]
, given: 11233

Re: In triangle ABC,AB = AC= 2. Which of the following could be [#permalink]
26 Feb 2018, 12:33
1
This post received KUDOS
Here, your assumption about the angle is wrong. We do know from the stem that the triangle is a right triangle, with two equal sides 2 and 2, which means that we do also have two angles of 45° and the other of 90° that is on the opposite of the longest side: the hypotenus From the properties of triangles, we do know that the third side must be between the sum of the two sides: 2+2=4, the longest side must be 3.9,3.8 and so on, AND the difference of the same two side: 22=0, which means that the third side must be 0.1,0.2, 0.3 and so forth. Therefore, the area of the triangle must be between 0 and 2. Hope this helps. REGARDS
_________________
Need Practice? 20 Free GRE Quant Tests available for free with 20 Kudos GRE Prep Club Members of the Month: Each member of the month will get three months free access of GRE Prep Club tests.



Manager
Joined: 15 Feb 2018
Posts: 53
Followers: 1
Kudos [?]:
21
[0], given: 33

Re: In triangle ABC,AB = AC= 2. Which of the following could be [#permalink]
21 Mar 2018, 23:21
I am so incapable of understanding this question and also the solutions above. It is not necessarily a 454590 triangle so isn't there many possibilities?
Would it be possible to give me a detailed explanation of the solution in the problem? I have this "it cannot be determined" answer in mind but obviously I am wrong.
The height or the base of the triangle can be anything, no? Would have been easier to explain what I am thinking with pictures but I guess they're not allowed.



Founder
Joined: 18 Apr 2015
Posts: 11974
Followers: 252
Kudos [?]:
2986
[1]
, given: 11233

Re: In triangle ABC,AB = AC= 2. Which of the following could be [#permalink]
22 Mar 2018, 13:00
1
This post received KUDOS
Quote: From the properties of triangles, we do know that the third side must be between the sum of the two sides: 2+2=4, the longest side must be 3.9,3.8 and so on, AND the difference of the same two side: 22=0, which means that the third side must be 0.1,0.2, 0.3 and so forth.
Therefore, the area of the triangle must be between 0 and 2.
More simple than this is very difficult to figure it out how to explain
_________________
Need Practice? 20 Free GRE Quant Tests available for free with 20 Kudos GRE Prep Club Members of the Month: Each member of the month will get three months free access of GRE Prep Club tests.



Manager
Joined: 26 Jun 2017
Posts: 102
Followers: 1
Kudos [?]:
46
[1]
, given: 38

Re: In triangle ABC,AB = AC= 2. Which of the following could be [#permalink]
26 Mar 2018, 12:17
1
This post received KUDOS
Carcass wrote: Here, your assumption about the angle is wrong.
We do know from the stem that the triangle is a right triangle, with two equal sides 2 and 2, which means that we do also have two angles of 45° and the other of 90° that is on the opposite of the longest side: the hypotenus
From the properties of triangles, we do know that the third side must be between the sum of the two sides: 2+2=4, the longest side must be 3.9,3.8 and so on, AND the difference of the same two side: 22=0, which means that the third side must be 0.1,0.2, 0.3 and so forth.
Therefore, the area of the triangle must be between 0 and 2.
Hope this helps.
REGARDS But, on what basis can you regard this triangle as a right triangle, you can surely say it as isosceles, and only after drawing a perpendicular to the base, you can say that this is a right triangle.
_________________
What you think, you become.



Manager
Joined: 26 Jan 2018
Posts: 189
Followers: 1
Kudos [?]:
127
[2]
, given: 3

Re: In triangle ABC,AB = AC= 2. Which of the following could be [#permalink]
09 Apr 2018, 05:15
2
This post received KUDOS
From question it is an isosceles triangle.
For area to be highest, it has to be a right angled triangle.
1/2 * base *height
1/2 * 2 * 2 = 2 is highest possible area. Any option less than this can be answer option.
Hence all the 4 option.
Please correct if my answer is wrong.



Intern
Joined: 27 Nov 2014
Posts: 30
Followers: 0
Kudos [?]:
5
[0], given: 0

Re: In triangle ABC,AB = AC= 2. Which of the following could be [#permalink]
29 Sep 2018, 10:46
Basic, the more uniform the shape is the higher the area will be. For a triangle with two equal sides the right triangle with 45: 45: 90 got the highest area.



Intern
Joined: 13 Oct 2018
Posts: 21
Followers: 0
Kudos [?]:
1
[0], given: 4

Re: In triangle ABC,AB = AC= 2. Which of the following could be [#permalink]
28 Oct 2018, 11:47
Carcass wrote: Here, your assumption about the angle is wrong.
We do know from the stem that the triangle is a right triangle, with two equal sides 2 and 2, which means that we do also have two angles of 45° and the other of 90° that is on the opposite of the longest side: the hypotenus
From the properties of triangles, we do know that the third side must be between the sum of the two sides: 2+2=4, the longest side must be 3.9,3.8 and so on, AND the difference of the same two side: 22=0, which means that the third side must be 0.1,0.2, 0.3 and so forth.
Therefore, the area of the triangle must be between 0 and 2.
Hope this helps.
REGARDS we know that the third side will be 22<x<2+2 i.e lie between 04. So my doubt arises that the area will be between 0 to 2.As the area is between 02 will the option D be the part of the answer ? I feel the areas will only be 0.5 1 and 1.5 the area can be 1.999 too but not 2 is what I feel. Please correct me if I'm wrong I have my gre in 4 days



Intern
Joined: 02 Sep 2019
Posts: 46
Concentration: Finance
GPA: 3.14
Followers: 0
Kudos [?]:
22
[0], given: 14

Re: In triangle ABC,AB = AC= 2. Which of the following could be [#permalink]
21 Feb 2020, 03:51
why we assume it is a right triangle? The question never mention about the height and if they asking about something else they will put it for you. yeah it can be an isosceles triangle with different angle, but if that was the case how are we going to calculate the area?
PLEASE IF I'M WRONG CORRECT ME THIS WILL HELP ME A LOT



Founder
Joined: 18 Apr 2015
Posts: 11974
Followers: 252
Kudos [?]:
2986
[0], given: 11233

Re: In triangle ABC,AB = AC= 2. Which of the following could be [#permalink]
22 Feb 2020, 04:20
See my explanation above, please. Regards
_________________
Need Practice? 20 Free GRE Quant Tests available for free with 20 Kudos GRE Prep Club Members of the Month: Each member of the month will get three months free access of GRE Prep Club tests.



Manager
Joined: 10 Feb 2020
Posts: 202
Followers: 1
Kudos [?]:
52
[1]
, given: 114

Re: In triangle ABC,AB = AC= 2. Which of the following could be [#permalink]
14 Jun 2020, 04:56
1
This post received KUDOS
Property of triangle: Sum of 2 sides must be greater than 3rd side: side1=2, side2=2 side1+side2 = 4 means third side must be less than 4 Another property of triangle: Difference of 2 sides must be less than 3rd side side1=2, side=2 side1side2 = 22 =0 means third side must be greater than zero The value will lie between 0  2.
_________________
Ever Tried? Ever Failed? No Matter. Try Again. Fail Again. Fail Better!!



Intern
Joined: 27 May 2020
Posts: 7
Followers: 0
Kudos [?]:
3
[0], given: 0

Re: In triangle ABC,AB = AC= 2. Which of the following could be [#permalink]
30 Jun 2020, 03:57
Carcass wrote: In triangle ABC,AB = AC= 2. Which of the following could be the area of the triangle ABC ? Indicate all possible areas❑ 0.5 ❑ 1.0 ❑ 1.5 ❑ 2.0 ❑ 2.5 ❑ 3.0 I have no idea where im going wrong, please correct me. so I draw a height from A to the base, call it h call BC=b we know that 0<b<4 so I took 2 extremes: 1) b=0.1 by Pythagoras, h= sqrt(2^2  (0.1/2)^2) = 2 so minimum area is 0.09 (approx. equal to 0) 2) b=3.9 h = sqrt (2^2  (3.9/2)^2) = 0.44 maximum area= 3.9*0.44/2= 0.9 I knowwww that something must be wrong can someone help out pleaseee



Moderator
Joined: 16 Sep 2019
Posts: 180
Followers: 1
Kudos [?]:
166
[1]
, given: 5

Re: In triangle ABC,AB = AC= 2. Which of the following could be [#permalink]
01 Jul 2020, 10:33
1
This post received KUDOS
There is a property that the right angled triangle has the largest area. Now, we are given that two sides are equal. If two sides are equal then the angles opposite them will also be equal. So we get a 454590 right angled triangle. Now, the base and perpendicular = 2. So, the area = \(\frac{1}{2} \times 2 \times 2 = 2\) 2 is the largest area we can get. Now, if the third side = 0, then essentially we get a line of length 2. and the area of triangle becomes 0. So, the minimum area has to be greater than 0. and maximum area is 2. The values of area possible lie between 0 and 2. \(0 < Area < 2\) OA, A,B,C,Dkaterjigeorge wrote: Carcass wrote: In triangle ABC,AB = AC= 2. Which of the following could be the area of the triangle ABC ? Indicate all possible areas❑ 0.5 ❑ 1.0 ❑ 1.5 ❑ 2.0 ❑ 2.5 ❑ 3.0 I have no idea where im going wrong, please correct me. so I draw a height from A to the base, call it h call BC=b we know that 0<b<4 so I took 2 extremes: 1) b=0.1 by Pythagoras, h= sqrt(2^2  (0.1/2)^2) = 2 so minimum area is 0.09 (approx. equal to 0) 2) b=3.9 h = sqrt (2^2  (3.9/2)^2) = 0.44 maximum area= 3.9*0.44/2= 0.9 I knowwww that something must be wrong can someone help out pleaseee
Attachments
right triangle.png [ 3.4 KiB  Viewed 97 times ]
_________________
If you like my solution, do give kudos!




Re: In triangle ABC,AB = AC= 2. Which of the following could be
[#permalink]
01 Jul 2020, 10:33





