 It is currently 14 Jul 2020, 12:01 ### GMAT Club Daily Prep

#### Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

#### Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here. # In the xy plane, which of the statements below individually  Question banks Downloads My Bookmarks Reviews Important topics
Author Message
TAGS:
Director  Joined: 22 Jun 2019
Posts: 521
Followers: 4

Kudos [?]: 99 , given: 161

In the xy plane, which of the statements below individually [#permalink] 00:00

Question Stats: 50% (01:08) correct 50% (00:51) wrong based on 18 sessions
In the xy plane, which of the statements below individually provide enough information to determine whether line z passes through the origin?

Indicate all such statements.

[A] The equation of line z is y = mx + b and b = 0.
[B] The sum of the slope and the y-intercept of line z is 0.
[C] For any point (a, b) on line z, |a| = |b|.
[Reveal] Spoiler: OA

_________________

New to the GRE, and GRE CLUB Forum?
Posting Rules: QUANTITATIVE | VERBAL

Questions' Banks and Collection:
ETS: ETS Free PowerPrep 1 & 2 All 320 Questions Explanation. | ETS All Official Guides
3rd Party Resource's: All In One Resource's | All Quant Questions Collection | All Verbal Questions Collection | Manhattan 5lb All Questions Collection
Books: All GRE Best Books
Scores: Average GRE Score Required By Universities in the USA
Tests: All Free & Paid Practice Tests | GRE Prep Club Tests
Extra: Permutations, and Combination
Vocab: GRE Vocabulary

Director  Joined: 22 Jun 2019
Posts: 521
Followers: 4

Kudos [?]: 99 , given: 161

Re: In the xy plane, which of the statements below individually [#permalink]
OFFICIAL EXPLANATION:

Statement I tells you directly that b, the y-intercept, is equal to 0. Thus, the line passes through the origin.

For statement II, both the slope and the y-intercept could be 0, in which case line z is a horizontal line lying on the x-axis and therefore passes through the origin. Or, the slope and y-intercept could simply be opposites, such as 2 and -2. A line with a y-intercept of -2 and a slope of 2 would not pass through the origin. Therefore, this statement is not sufficient to determine whether line z passes through the origin.

As for statement III, since |a| = |b| must hold for every point on the line, then (0, 0) is a point on the line, since |0| = |0|.
_________________

New to the GRE, and GRE CLUB Forum?
Posting Rules: QUANTITATIVE | VERBAL

Questions' Banks and Collection:
ETS: ETS Free PowerPrep 1 & 2 All 320 Questions Explanation. | ETS All Official Guides
3rd Party Resource's: All In One Resource's | All Quant Questions Collection | All Verbal Questions Collection | Manhattan 5lb All Questions Collection
Books: All GRE Best Books
Scores: Average GRE Score Required By Universities in the USA
Tests: All Free & Paid Practice Tests | GRE Prep Club Tests
Extra: Permutations, and Combination
Vocab: GRE Vocabulary

Manager  Joined: 10 Feb 2020
Posts: 239
Followers: 1

Kudos [?]: 60 , given: 131

Re: In the xy plane, which of the statements below individually [#permalink]
huda wrote:
OFFICIAL EXPLANATION:

Statement I tells you directly that b, the y-intercept, is equal to 0. Thus, the line passes through the origin.

For statement II, both the slope and the y-intercept could be 0, in which case line z is a horizontal line lying on the x-axis and therefore passes through the origin. Or, the slope and y-intercept could simply be opposites, such as 2 and -2. A line with a y-intercept of -2 and a slope of 2 would not pass through the origin. Therefore, this statement is not sufficient to determine whether line z passes through the origin.

As for statement III, since |a| = |b| must hold for every point on the line, then (0, 0) is a point on the line, since |0| = |0|.

For statement 3, why did you consider |a| and |b| = 0?
_________________

Ever Tried? Ever Failed? No Matter. Try Again. Fail Again. Fail Better!! GRE Instructor Joined: 10 Apr 2015
Posts: 3535
Followers: 133

Kudos [?]: 4016  , given: 65

Re: In the xy plane, which of the statements below individually [#permalink]
1
KUDOS
Expert's post
Farina wrote:
huda wrote:
OFFICIAL EXPLANATION:

Statement I tells you directly that b, the y-intercept, is equal to 0. Thus, the line passes through the origin.

For statement II, both the slope and the y-intercept could be 0, in which case line z is a horizontal line lying on the x-axis and therefore passes through the origin. Or, the slope and y-intercept could simply be opposites, such as 2 and -2. A line with a y-intercept of -2 and a slope of 2 would not pass through the origin. Therefore, this statement is not sufficient to determine whether line z passes through the origin.

As for statement III, since |a| = |b| must hold for every point on the line, then (0, 0) is a point on the line, since |0| = |0|.

For statement 3, why did you consider |a| and |b| = 0?

Key concept: If a point lies ON a line, then the coordinates of that point must SATISFY the equation of that line.

Statement 3: For any point (a, b) on line z, |a| = |b|
This tells us that all points on the line are such that the absolute value of the x-coordinate = the absolute value of the y-coordinate.
In other words, |x| = |y|
So, for example, since |-3| = 3, we know that the point (-3, 3) lies on line z
Likewise, since |0| = 0, we know that the point (0, 0) lies on line z
In other words, line z passes through the origin

Cheers,
Brent
_________________

Brent Hanneson – Creator of greenlighttestprep.com Manager  Joined: 10 Feb 2020
Posts: 239
Followers: 1

Kudos [?]: 60 , given: 131

Re: In the xy plane, which of the statements below individually [#permalink]
Thank you for your reply. Just want to add that 0 is one possibility, the value could be any number right? in that case statement 3 shouldnt be the confirmed answer?

GreenlightTestPrep wrote:
Farina wrote:
huda wrote:
OFFICIAL EXPLANATION:

Statement I tells you directly that b, the y-intercept, is equal to 0. Thus, the line passes through the origin.

For statement II, both the slope and the y-intercept could be 0, in which case line z is a horizontal line lying on the x-axis and therefore passes through the origin. Or, the slope and y-intercept could simply be opposites, such as 2 and -2. A line with a y-intercept of -2 and a slope of 2 would not pass through the origin. Therefore, this statement is not sufficient to determine whether line z passes through the origin.

As for statement III, since |a| = |b| must hold for every point on the line, then (0, 0) is a point on the line, since |0| = |0|.

For statement 3, why did you consider |a| and |b| = 0?

Key concept: If a point lies ON a line, then the coordinates of that point must SATISFY the equation of that line.

Statement 3: For any point (a, b) on line z, |a| = |b|
This tells us that all points on the line are such that the absolute value of the x-coordinate = the absolute value of the y-coordinate.
In other words, |x| = |y|
So, for example, since |-3| = 3, we know that the point (-3, 3) lies on line z
Likewise, since |0| = 0, we know that the point (0, 0) lies on line z
In other words, line z passes through the origin

Cheers,
Brent

_________________

Ever Tried? Ever Failed? No Matter. Try Again. Fail Again. Fail Better!!

GRE Instructor Joined: 10 Apr 2015
Posts: 3535
Followers: 133

Kudos [?]: 4016 , given: 65

Re: In the xy plane, which of the statements below individually [#permalink]
Expert's post
Farina wrote:
Thank you for your reply. Just want to add that 0 is one possibility, the value could be any number right? in that case statement 3 shouldnt be the confirmed answer?

A line is just a graphical representation of all possible solutions to an equation. That is, the x- and y-coordinates of every point on a line satisfy the equation of that line.
So, for example, the equation y = x + 1 has infinitely many solutions, including (0,1), (1,2), (2,3), (3.97, 4.97), etc.
For more on this concept watch: https://www.greenlighttestprep.com/modu ... /video/996

Likewise, the equation |x| = |y| also has infinitely many solutions. One of those solutions is (0, 0) since x = 0 and y = 0 satisfies the equation |x| = |y|
In fact any pair of values that satisfy the equation will be on the line.
_________________

Brent Hanneson – Creator of greenlighttestprep.com  Re: In the xy plane, which of the statements below individually   [#permalink] 23 Jun 2020, 17:09
Display posts from previous: Sort by

# In the xy plane, which of the statements below individually  Question banks Downloads My Bookmarks Reviews Important topics Powered by phpBB © phpBB Group Kindly note that the GRE® test is a registered trademark of the Educational Testing Service®, and this site has neither been reviewed nor endorsed by ETS®.