 It is currently 24 Mar 2019, 13:42 ### GMAT Club Daily Prep

#### Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

#### Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here. # In the circle above, if the area of the rectangle set inside  Question banks Downloads My Bookmarks Reviews Important topics
Author Message
TAGS:
Moderator  Joined: 18 Apr 2015
Posts: 5897
Followers: 96

Kudos [?]: 1154 , given: 5479

In the circle above, if the area of the rectangle set inside [#permalink]
Expert's post 00:00

Question Stats: 100% (00:49) correct 0% (00:00) wrong based on 6 sessions
Attachment: circle.png [ 7.74 KiB | Viewed 384 times ]

In the circle above, if the area of the rectangle set inside the circle is 200 and b = 8a, what is the circumference of the circle?

A. $$25\pi \sqrt{65}$$

B. $$5 \sqrt{65}$$

C. $$5\pi \sqrt{13}$$

D. $$5\pi \sqrt{65}$$

E. $$5\pi$$
[Reveal] Spoiler: OA

_________________ Manager  Joined: 15 Jan 2018
Posts: 147
GMAT 1: Q V
Followers: 3

Kudos [?]: 182  , given: 0

Re: In the circle above, if the area of the rectangle set inside [#permalink]
1
KUDOS
If you don't know the radius of a circle, you can't really answer anything about the circle, so finding the radius is your first priority. In this case, the diameter of the circle is the diagonal of this rectangle, so we should start there.

Since one side of the circle is a and the other is b, but b equals 8a, we can say the two sides are a and 8a. If the area is 200, we know that 8a^2 = 200, so a must equal 5. Therefore, the two sides of the rectangle are 5 and (plugging 5 into 8a gives us) 40 for the other side.

If two sides of a right triangle are 5 and 40, this isn't a special triangle, so we're stuck with the pythagorean theorem:

5^2 + 40^2 = d^2 (I'm calling the hypotenuse d here.)

So:

25 + 1600 = d^2

and

1625 = d^2

so

d = √1625

Now what? Nobody expects you to know the square root of 1625 but if you start factoring it out, we should see an answer pretty quickly. 1625 is obviously divisible by 5. An easy way to divide anything by 5 is to instead divide by 10 and then double it. In this case, dividing 1625 by 10 gets us 162.5, and doubling that gets us 325. Dividing 325 by 10 again gets us 32.5, and doubling that we get 65. So 1625 = 5x5x65. We know that 65 is 13x5, but since there's no nice square root of 65 we'll just leave it alone for now.

So we have:

d = √(5x5x65) = 5√65

This is the diameter of the circle, and since the circumference of a circle is πd, the circumference of this circle must be 5π√65, giving us answer choice D.
_________________

-
-
-
-
-

Need help with GRE math? Check out our ground-breaking books and app. Re: In the circle above, if the area of the rectangle set inside   [#permalink] 27 Mar 2018, 19:19
Display posts from previous: Sort by

# In the circle above, if the area of the rectangle set inside  Question banks Downloads My Bookmarks Reviews Important topics  Powered by phpBB © phpBB Group Kindly note that the GRE® test is a registered trademark of the Educational Testing Service®, and this site has neither been reviewed nor endorsed by ETS®.