It is currently 18 Nov 2018, 14:53
My Tests

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

In packing for a trip, Sarah puts three pairs of socks - one

  Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:
1 KUDOS received
Director
Director
Joined: 20 Apr 2016
Posts: 743
Followers: 6

Kudos [?]: 500 [1] , given: 86

CAT Tests
In packing for a trip, Sarah puts three pairs of socks - one [#permalink] New post 20 Jun 2017, 11:09
1
This post received
KUDOS
00:00

Question Stats:

66% (01:06) correct 33% (00:38) wrong based on 3 sessions
In packing for a trip, Sarah puts three pairs of socks - one red, one blue, and one green - into one compartment of her suitcase. If she then pulls four individual socks out of the suitcase, simultaneously and at random, what is the probability that she pulls out exactly two matching pairs?

(A) 1/5

(B) 1/4

(C) 1/3

(D) 2/3

(E) 4/5
[Reveal] Spoiler: OA

_________________

If you found this post useful, please let me know by pressing the Kudos Button


Last edited by pranab01 on 28 Jun 2017, 19:19, edited 2 times in total.
2 KUDOS received
GMAT Club Legend
GMAT Club Legend
User avatar
Joined: 07 Jun 2014
Posts: 4711
GRE 1: Q167 V156
WE: Business Development (Energy and Utilities)
Followers: 91

Kudos [?]: 1614 [2] , given: 376

CAT Tests
Re: In packing for a trip, Sarah puts three pairs of socks - one [#permalink] New post 20 Jun 2017, 14:23
2
This post received
KUDOS
Expert's post
Explanation

Let us assume all the socks are distinct! I.E. red1, red2, blue1, blue2, green1 and green2.

Let us assume you pull out a red sock its probability is \(\frac{2}{6}\).
next red sock is \(\frac{1}{5}\).
Next you pull blue \(\frac{2}{4}\).
and the other blue \(\frac{1}{3}\).

Now we have the probability of the event (red1, red2, blue1, blue2 ) = \(\frac{2}{6}\frac{1}{5}\frac{2}{4}\frac{1}{3}\) = \(\frac{1}{90}\)

But wait this is not the final probability you need not worry about the order so they can be in any order.
To arrange 4 things we have \(4!\) ways.

New probality = \(4! \times \frac{1}{90}\).

Now we can also pull out green sock so we need to choose 2 coors among 3 can be done by \(3C2\) ways or 3 ways.

Final probability = \(4! \times 3 \times \frac{1}{90} = \frac{24}{30} = \frac{4}{5}\).


Please share the source of these question!
I have a strong feeling this is not a GRE question.
_________________

Sandy
If you found this post useful, please let me know by pressing the Kudos Button

Try our free Online GRE Test

2 KUDOS received
Intern
Intern
Joined: 17 Apr 2017
Posts: 7
Followers: 0

Kudos [?]: 7 [2] , given: 2

Re: In packing for a trip, Sarah puts three pairs of socks - one [#permalink] New post 28 Jun 2017, 06:16
2
This post received
KUDOS
There are three different colour socks, so either it could RRBB+RRGG+BBGG,

Let's find for one case, we can finally multiply with three,

So let’s find for RRBB

= (2/6)*(1/5)*(2/4)*(1/3) * 4!/(2!*2!) = 1/15

4!/(2!*2!) is multiplied as the four socks can pulled out in any order (RRBB,BBRR,RBRB,BRBR,BRRB,RBBR)

There are three different cases possible(as shown above),

So 1/15 * 3 = 1/5

So the answer is A.
1 KUDOS received
Intern
Intern
Joined: 17 Jul 2017
Posts: 15
Followers: 0

Kudos [?]: 7 [1] , given: 13

Re: In packing for a trip, Sarah puts three pairs of socks - one [#permalink] New post 26 Jul 2017, 01:15
1
This post received
KUDOS
sandy wrote:
Explanation

Let us assume all the socks are distinct! I.E. red1, red2, blue1, blue2, green1 and green2.

Let us assume you pull out a red sock its probability is \(\frac{2}{6}\).
next red sock is \(\frac{1}{5}\).
Next you pull blue \(\frac{2}{4}\).
and the other blue \(\frac{1}{3}\).

Now we have the probability of the event (red1, red2, blue1, blue2 ) = \(\frac{2}{6}\frac{1}{5}\frac{2}{4}\frac{1}{3}\) = \(\frac{1}{90}\)

But wait this is not the final probability you need not worry about the order so they can be in any order.
To arrange 4 things we have \(4!\) ways.

New probality = \(4! \times \frac{1}{90}\).

Now we can also pull out green sock so we need to choose 2 colors among 3 can be done by \(3C2\) ways or 3 ways.

Final probability = \(4! \times 3 \times \frac{1}{90} = \frac{24}{30} = \frac{4}{5}\).


Please share the source of these question!
I have a strong feeling this is not a GRE question.



Hi Could you re-explain the green sock bit? So out of 4 socks, we first check for 2 pairs (which is 1/90). Then what is the scenario for green socks? Thank you!
4 KUDOS received
Director
Director
Joined: 20 Apr 2016
Posts: 743
Followers: 6

Kudos [?]: 500 [4] , given: 86

CAT Tests
Re: In packing for a trip, Sarah puts three pairs of socks - one [#permalink] New post 26 Jul 2017, 03:26
4
This post received
KUDOS
nancyjose wrote:
sandy wrote:
Explanation

Let us assume all the socks are distinct! I.E. red1, red2, blue1, blue2, green1 and green2.

Let us assume you pull out a red sock its probability is \(\frac{2}{6}\).
next red sock is \(\frac{1}{5}\).
Next you pull blue \(\frac{2}{4}\).
and the other blue \(\frac{1}{3}\).

Now we have the probability of the event (red1, red2, blue1, blue2 ) = \(\frac{2}{6}\frac{1}{5}\frac{2}{4}\frac{1}{3}\) = \(\frac{1}{90}\)

But wait this is not the final probability you need not worry about the order so they can be in any order.
To arrange 4 things we have \(4!\) ways.

New probality = \(4! \times \frac{1}{90}\).

Now we can also pull out green sock so we need to choose 2 colors among 3 can be done by \(3C2\) ways or 3 ways.

Final probability = \(4! \times 3 \times \frac{1}{90} = \frac{24}{30} = \frac{4}{5}\).


Please share the source of these question!
I have a strong feeling this is not a GRE question.



Hi Could you re-explain the green sock bit? So out of 4 socks, we first check for 2 pairs (which is 1/90). Then what is the scenario for green socks? Thank you!


Hello nancyjose,
try this approach if it makes it easier to understand-

We have 3 pairs in total i.e 2red, 2 blue and 2 green

and 6 number of socks in total.

Now Select 2 pairs out of 3 i.e = 3c2 = 3 (since we need exactly 2pair)

Selecting 4 socks randomly = 6c4 = 15

Probability = 3/15 = 1/5
_________________

If you found this post useful, please let me know by pressing the Kudos Button

1 KUDOS received
Target Test Prep Representative
User avatar
Status: Head GRE Instructor
Affiliations: Target Test Prep
Joined: 09 May 2016
Posts: 161
Location: United States
Followers: 4

Kudos [?]: 114 [1] , given: 0

Re: In packing for a trip, Sarah puts three pairs of socks - one [#permalink] New post 15 Dec 2017, 07:01
1
This post received
KUDOS
Expert's post
pranab01 wrote:
In packing for a trip, Sarah puts three pairs of socks - one red, one blue, and one green - into one compartment of her suitcase. If she then pulls four individual socks out of the suitcase, simultaneously and at random, what is the probability that she pulls out exactly two matching pairs?

(A) 1/5

(B) 1/4

(C) 1/3

(D) 2/3

(E) 4/5


We have three scenarios of two matching pairs: 1) a red pair and a blue pair; 2) a red pair and a green pair; 3) a blue pair and a green pair. Let’s start with the probability of selecting a red pair and a blue pair. To select a red pair and a blue pair is to select two red socks and two blue socks. So let’s assume the first two socks are red and the last two socks are blue; the probability of selecting these socks in that order is:

P(R, R, B, B) = 2/6 x 1/5 x 2/4 x 1/3 = 1/6 x 1/5 x 1/3 = 1/90.

However, the two red socks and the two blue socks, in any order, can be selected in 4!/(2! x 2!) = 24/4 = 6 ways. Thus, the probability of two red socks and two blue socks is:

P(2R and 2B) = 1/90 x 6 = 6/90 = 1/15.

Using similar logic, we see that the probability of pulling a red pair and a green pair is 1/15, and so is the probability of pulling a blue pair and a green pair. Thus, the total probability is:

1/15 + 1/15 + 1/15 = 3/15 = 1/5.

Alternate Solution:

From a total of 6 socks, two pairs, i.e., 4 socks, can be pulled in 6C4 = 6!/(4! 2!) = (6 x 5)/2 = 3 x 5 = 15 ways.

Three of these choices contain two matching pairs, namely: 1) a red pair and a blue pair, 2) a blue pair and a green pair; 3) a red pair and a green pair.

Therefore, the probability of pulling two matching pairs is 3/15 = 1/5.

Answer: A
_________________

Jeffery Miller
Head of GRE Instruction

GRE Quant Self-Study Course
500+ lessons 3000+ practice problems 800+ HD solutions

Re: In packing for a trip, Sarah puts three pairs of socks - one   [#permalink] 15 Dec 2017, 07:01
Display posts from previous: Sort by

In packing for a trip, Sarah puts three pairs of socks - one

  Question banks Downloads My Bookmarks Reviews Important topics  


GRE Prep Club Forum Home| About| Terms and Conditions and Privacy Policy| GRE Prep Club Rules| Contact

Powered by phpBB © phpBB Group

Kindly note that the GRE® test is a registered trademark of the Educational Testing Service®, and this site has neither been reviewed nor endorsed by ETS®.