It is currently 23 Sep 2020, 08:58
My Tests

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Four women and three men must be seated in a row for a group

  Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:
2 KUDOS received
GRE Instructor
User avatar
Joined: 10 Apr 2015
Posts: 3830
Followers: 148

Kudos [?]: 4479 [2] , given: 69

CAT Tests
Four women and three men must be seated in a row for a group [#permalink] New post 06 Jun 2017, 13:05
2
This post received
KUDOS
Expert's post
00:00

Question Stats:

42% (01:44) correct 57% (02:41) wrong based on 45 sessions
Four women and three men must be seated in a row for a group photograph. If no two men can sit next to each other, in how many different ways can the seven people be seated?

A) 240
B) 480
C) 720
D) 1440
E) 5640
[Reveal] Spoiler: OA

_________________

Brent Hanneson – Creator of greenlighttestprep.com
If you enjoy my solutions, you'll like my GRE prep course.
Image
Sign up for GRE Question of the Day emails

3 KUDOS received
GRE Instructor
User avatar
Joined: 10 Apr 2015
Posts: 3830
Followers: 148

Kudos [?]: 4479 [3] , given: 69

CAT Tests
Re: Four women and three men must be seated in a row for a group [#permalink] New post 07 Jun 2017, 15:02
3
This post received
KUDOS
Expert's post
GreenlightTestPrep wrote:
Four women and three men must be seated in a row for a group photograph. If no two men can sit next to each other, in how many different ways can the seven people be seated?

A) 240
B) 480
C) 720
D) 1440
E) 5640


Take the task of arranging the 7 peopl and break it into stages.

Stage 1: Arrange the 4 women in a row
We can arrange n unique objects in n! ways.
So, we can arrange the 4 women in 4! ways (= 24 ways)
So, we can complete stage 1 in 24 ways

IMPORTANT: For each arrangement of 4 women, there are 5 spaces where the 3 men can be placed.
If we let W represent each woman, we can add the spaces as follows: _W_W_W_W_
So, if we place the men in 3 of the available spaces, we can ENSURE that two men are never seated together.

Let's let A, B and C represent the 3 men.

Stage 2: Place man A in an available space.
There are 5 spaces, so we can complete stage 2 in 5 ways.

Stage 3: Place man B in an available space.
There are 4 spaces remaining, so we can complete stage 3 in 4 ways.

Stage 4: Place man C in an available space.
There are 3 spaces remaining, so we can complete stage 4 in 3 ways.

By the Fundamental Counting Principle (FCP), we can complete the 4 stages (and thus seat all 7 people) in (24)(5)(4)(3) ways (= 1440 ways)

Answer:
[Reveal] Spoiler:
D


Note: the FCP can be used to solve the MAJORITY of counting questions on the GMAT. So be sure to learn this technique.

RELATED VIDEOS



_________________

Brent Hanneson – Creator of greenlighttestprep.com
If you enjoy my solutions, you'll like my GRE prep course.
Image
Sign up for GRE Question of the Day emails

Intern
Intern
Joined: 12 Aug 2018
Posts: 9
Followers: 0

Kudos [?]: 3 [0], given: 3

Re: Four women and three men must be seated in a row for a group [#permalink] New post 22 Aug 2018, 00:49
May I know why is it when we place the men, we don't follow the reasoning where since there are three men, there are three men to choose from, hence 3x, followed by 2x and 1x. Instead, we follow the reasoning of the available chairs instead i.e. 5 chairs, then 4, then 3. I agree with your way as it seems correct but I can't grasp the logic behind it. Thanks for helping me to better understand.
Retired Moderator
User avatar
Joined: 07 Jun 2014
Posts: 4803
GRE 1: Q167 V156
WE: Business Development (Energy and Utilities)
Followers: 171

Kudos [?]: 2915 [0], given: 394

Re: Four women and three men must be seated in a row for a group [#permalink] New post 22 Aug 2018, 16:12
Expert's post
Runnyboy44 wrote:
May I know why is it when we place the men, we don't follow the reasoning where since there are three men, there are three men to choose from, hence 3x, followed by 2x and 1x. Instead, we follow the reasoning of the available chairs instead i.e. 5 chairs, then 4, then 3. I agree with your way as it seems correct but I can't grasp the logic behind it. Thanks for helping me to better understand.


Say there are 9 chairs so then there is a blank space to the left of a woman and a blank space to the right. Like below

_ _ _ _ _ _ _ _ _

So we can place women on chair 2 chair 4....chair 8.

Chair 2: 4 woman available for seating

Chair 4: 3 woman available for seating

Chair 6: 2 woman available for seating

Chair 8: 1 woman available for seating

So total ways = \(4 \times 3 \times 2 \times 1= 4!=24\).

Now blanks spaces available for man_1 = 5; man_2= 4; man_3=3

Total ways is \(5 \times 4 \times 3= 60\).

In the first case we are arranging the women in the second case we are arranging the blanks. When we say no two man can sit together the positions of women are fixed: i.e. 2, 4, 6, 8. Position of men are not fixed. So a viable arrangement can be:

M-W-W-M-W-M-W vs W-W-M-W-M-W-M.

If you had only 3 places for men to sit then the only viable combination would have been \(3 \times 2 \times 1= 3!\) just like the women case but here we have 5 places and 3 men, hence \(5 \times 4 \times 3=60\).


Note this is also called arranging m things in n places and it is represented by:

\(P^{n}_{m}=\frac{n!}{(n-m)!}\)

So 5 chairs 3 men: \(P^{5}_{3}=\frac{5!}{(5-3)!}= 5 \times 4 \times 3\)
_________________

Sandy
If you found this post useful, please let me know by pressing the Kudos Button

Try our free Online GRE Test

Intern
Intern
Joined: 18 Jul 2018
Posts: 6
Followers: 0

Kudos [?]: 2 [0], given: 2

Re: Four women and three men must be seated in a row for a group [#permalink] New post 30 Oct 2018, 11:55
Why do we have to find the ways to arrange the women first? Would it be possible to solve this problem by finding all the different ways of arranging the 7 people then subtract out the number of arrangements that violate the restriction?
GRE Instructor
User avatar
Joined: 10 Apr 2015
Posts: 3830
Followers: 148

Kudos [?]: 4479 [0], given: 69

CAT Tests
Re: Four women and three men must be seated in a row for a group [#permalink] New post 30 Oct 2018, 12:11
Expert's post
msawicka wrote:
Why do we have to find the ways to arrange the women first? Would it be possible to solve this problem by finding all the different ways of arranging the 7 people then subtract out the number of arrangements that violate the restriction?


There's only one way to find out . . . :-D
_________________

Brent Hanneson – Creator of greenlighttestprep.com
If you enjoy my solutions, you'll like my GRE prep course.
Image
Sign up for GRE Question of the Day emails

1 KUDOS received
Intern
Intern
Joined: 16 Apr 2020
Posts: 1
Followers: 0

Kudos [?]: 1 [1] , given: 0

Re: Four women and three men must be seated in a row for a group [#permalink] New post 16 Apr 2020, 07:28
1
This post received
KUDOS
There is another way to consider this question:
In case one: W_W_W_W
In case two: _W_W_WW
In case three: WW_W_W_

This would ensure that no two men are sitting together; it also complicates the above solution, as the solution would be 3*4!*3!, or 432.
GRE Instructor
User avatar
Joined: 10 Apr 2015
Posts: 3830
Followers: 148

Kudos [?]: 4479 [0], given: 69

CAT Tests
Re: Four women and three men must be seated in a row for a group [#permalink] New post 27 Apr 2020, 07:21
Expert's post
Question wrote:
There is another way to consider this question:
In case one: W_W_W_W
In case two: _W_W_WW
In case three: WW_W_W_

This would ensure that no two men are sitting together; it also complicates the above solution, as the solution would be 3*4!*3!, or 432.


There are actually 10 different cases in total.
1. W_W_W_W
2. _WW_W_W
3. WW_W_W_
4. _W_WW_W
5. W_WW_W_
6. _W_W_WW
7. W_W_WW_
8. _WWW_W_
9. _W_WWW_
10. _WW_WW_

Each of the 10 possible configurations can be achieved in (4!)(3!) ways.

Cheers,
Brent
_________________

Brent Hanneson – Creator of greenlighttestprep.com
If you enjoy my solutions, you'll like my GRE prep course.
Image
Sign up for GRE Question of the Day emails

Re: Four women and three men must be seated in a row for a group   [#permalink] 27 Apr 2020, 07:21
Display posts from previous: Sort by

Four women and three men must be seated in a row for a group

  Question banks Downloads My Bookmarks Reviews Important topics  


GRE Prep Club Forum Home| About| Terms and Conditions and Privacy Policy| GRE Prep Club Rules| Contact

Powered by phpBB © phpBB Group

Kindly note that the GRE® test is a registered trademark of the Educational Testing Service®, and this site has neither been reviewed nor endorsed by ETS®.