Author 
Message 
TAGS:


Moderator
Joined: 18 Apr 2015
Posts: 4914
Followers: 74
Kudos [?]:
977
[3]
, given: 4499

AB = DE, BC = CD, BE is parallel to CD, and BC is par [#permalink]
02 Aug 2017, 14:49
3
This post received KUDOS
Question Stats:
50% (01:59) correct
49% (02:15) wrong based on 55 sessions
Attachment:
box.jpg [ 18.52 KiB  Viewed 3102 times ]
AB = DE, BC = CD, BE is parallel to CD, and BC is parallel to DF.
Quantity A 
Quantity B 
The area of triangle ABE 
The area of quadrilateral BCDF 
A) Quantity A is greater. B) Quantity B is greater. C) The two quantities are equal. D) The relationship cannot be determined from the information given.
_________________
Get the 2 FREE GREPrepclub Tests




Director
Joined: 20 Apr 2016
Posts: 743
Followers: 6
Kudos [?]:
500
[2]
, given: 86

Re: AB = DE, BC = CD, BE is parallel to CD, and BC is par [#permalink]
26 Sep 2017, 22:20
2
This post received KUDOS
pclawong wrote: explain please This is a tough ques, let me try consider AB=DE =x now join Band D in the quadrilateral ABDE we have angle A =90 degree angle E = 90 degree and AB=DE = x So quadrilateral ABDE is a square. and Area of square ABDE = x^2 Now we need the area of triangle ABE = Area of square ABDE  area of triangle BDE  area of triangle DEF Area of triangle BDF = 1/2 * base * altitude =\(\frac{1}{2}\) \(* x *\)\(\frac{1}{2}*x\)(since side BD =x and 1/2 * total distance = altitude of triangle BDF, as BDEA is square) and similarly Area of Triangle DEF =\(\frac{1}{2}\) \(*x *\) \(\frac{1}{2}*x\) Therefore Area of Triangle ABE = \(x^2\)  (\(\frac{1}{4}*x^2\) + \(\frac{1}{4}*x^2\)) =\(\frac{1}{2} *x^2\) Now in quadrilaterl BCDF we have BC=CD , BC parallel to FD and BE parallel to CD and angle F =90degree (since the diagonal cuts at 90 degree ) Therefore we can consider BCDF is a square Area of square BCDF=\(\frac{diagonal ^2}{2}\) = \(\frac{1}{2} *x^2\) Hence option C. All queries are welcome!!!
Attachments
box (1).jpg [ 13.66 KiB  Viewed 2713 times ]
_________________
If you found this post useful, please let me know by pressing the Kudos Button



Director
Joined: 20 Apr 2016
Posts: 743
Followers: 6
Kudos [?]:
500
[2]
, given: 86

Re: AB = DE, BC = CD, BE is parallel to CD, and BC is par [#permalink]
26 Sep 2017, 22:31
2
This post received KUDOS
pranab01 wrote: pclawong wrote: explain please This is a tough ques, let me try All queries are welcome!!! Based on the above solution if the reasoning is correct then we can also have the diagram (attached) Now if we divide to 10 small triangles (considering all the assumption given and proven in previous response) Then Area of Triangle = ABE = sum of 4 triangles and Area of quadrialteral = sum of 4 triangles This also led to option C. Kindly let me know if my reasoning are correct. Thanks in advance. and all queries are welcome
Attachments
box .jpg [ 16.57 KiB  Viewed 2709 times ]
_________________
If you found this post useful, please let me know by pressing the Kudos Button



Intern
Joined: 26 Sep 2017
Posts: 31
Followers: 0
Kudos [?]:
3
[2]
, given: 19

Re: AB = DE, BC = CD, BE is parallel to CD, and BC is par [#permalink]
27 Sep 2017, 05:57
2
This post received KUDOS
the fastest approach is by 30:60:90 angle formed by BAE do it quick by 1:root3:2 you get root3/2 in quantity A as well as in quantity B so c is the answer



Director
Joined: 20 Apr 2016
Posts: 743
Followers: 6
Kudos [?]:
500
[2]
, given: 86

Re: AB = DE, BC = CD, BE is parallel to CD, and BC is par [#permalink]
27 Sep 2017, 09:17
2
This post received KUDOS
bim1946 wrote: the fastest approach is by 30:60:90 angle formed by BAE do it quick by 1:root3:2 you get root3/2 in quantity A as well as in quantity B so c is the answer is it 306090 or 459045? Can you show in details
_________________
If you found this post useful, please let me know by pressing the Kudos Button



Intern
Joined: 28 Feb 2017
Posts: 7
Followers: 0
Kudos [?]:
2
[1]
, given: 3

Re: AB = DE, BC = CD, BE is parallel to CD, and BC is par [#permalink]
27 Sep 2017, 11:35
1
This post received KUDOS
Thank you.



Intern
Joined: 21 Aug 2017
Posts: 2
Followers: 0
Kudos [?]:
1
[1]
, given: 0

Re: AB = DE, BC = CD, BE is parallel to CD, and BC is par [#permalink]
15 Nov 2017, 12:14
1
This post received KUDOS
Can Someone Pls explain how we know that BA = BD...or just how BDAE is a square.



Intern
Joined: 14 Oct 2017
Posts: 5
Followers: 0
Kudos [?]:
3
[1]
, given: 0

Re: AB = DE, BC = CD, BE is parallel to CD, and BC is par [#permalink]
06 Dec 2017, 15:14
1
This post received KUDOS
pranab01 wrote: pclawong wrote: explain please This is a tough ques, let me try consider AB=DE =x now join Band D in the quadrilateral ABDE we have angle A =90 degree angle E = 90 degree and AB=DE = x So quadrilateral ABDE is a square. and Area of square ABDE = x^2 Now we need the area of triangle ABE = Area of square ABDE  area of triangle BDE  area of triangle DEF Area of triangle BDF = 1/2 * base * altitude =\(\frac{1}{2}\) \(* x *\)\(\frac{1}{2}*x\)(since side BD =x and 1/2 * total distance = altitude of triangle BDF, as BDEA is square) and similarly Area of Triangle DEF =\(\frac{1}{2}\) \(*x *\) \(\frac{1}{2}*x\) Therefore Area of Triangle ABE = \(x^2\)  (\(\frac{1}{4}*x^2\) + \(\frac{1}{4}*x^2\)) =\(\frac{1}{2} *x^2\) Now in quadrilaterl BCDF we have BC=CD , BC parallel to FD and BE parallel to CD and angle F =90degree (since the diagonal cuts at 90 degree ) Therefore we can consider BCDF is a square Area of square BCDF=\(\frac{diagonal ^2}{2}\) = \(\frac{1}{2} *x^2\) Hence option C. All queries are welcome!!! and AB=DE = x So quadrilateral ABDE is a square. To be a square AB = AE has to be given. Not AB=DE.



Director
Joined: 20 Apr 2016
Posts: 743
Followers: 6
Kudos [?]:
500
[1]
, given: 86

Re: AB = DE, BC = CD, BE is parallel to CD, and BC is par [#permalink]
06 Dec 2017, 22:37
1
This post received KUDOS
LethalMonkey wrote: and AB=DE = x
So quadrilateral ABDE is a square.
To be a square AB = AE has to be given. Not AB=DE.
Plz see the attached diagram, In the quadrilateral ABDE, we have AB = DE and angle A = angle E = 90 degree and the diagonal bisect each other at equal length . SO angle b = angle d = 90 Now the triangle ABF and triangle BDF are equal, since they both have the common same height i.e AB = BD.
Attachments
box %281%29.jpg [ 14.57 KiB  Viewed 2207 times ]
_________________
If you found this post useful, please let me know by pressing the Kudos Button



Manager
Joined: 03 Dec 2017
Posts: 65
Followers: 0
Kudos [?]:
15
[0], given: 20

Re: AB = DE, BC = CD, BE is parallel to CD, and BC is par [#permalink]
07 Dec 2017, 19:18
bim1946 wrote: the fastest approach is by 30:60:90 angle formed by BAE do it quick by 1:root3:2 you get root3/2 in quantity A as well as in quantity B so c is the answer Dear friend, how do you get 30:60:90, please explain, really need your help. thanks



Intern
Joined: 08 Apr 2018
Posts: 44
Followers: 0
Kudos [?]:
14
[2]
, given: 16

Re: AB = DE, BC = CD, BE is parallel to CD, and BC is par [#permalink]
10 Jun 2018, 18:53
2
This post received KUDOS
Carcass wrote: Attachment: box.jpg AB = DE, BC = CD, BE is parallel to CD, and BC is parallel to DF.
Quantity A 
Quantity B 
The area of triangle ABE 
The area of quadrilateral BCDF 
A) Quantity A is greater. B) Quantity B is greater. C) The two quantities are equal. D) The relationship cannot be determined from the information given. I seem to be the only one who thinks B is greater. My reasoning is thus: They both have same lengths for Base and Height. However, Area of a Triangle is 1/2bh which makes it smaller than bh (Area of a quadrilateral). @poster can you provide the solution for this question?



Moderator
Joined: 18 Apr 2015
Posts: 4914
Followers: 74
Kudos [?]:
977
[0], given: 4499

Re: AB = DE, BC = CD, BE is parallel to CD, and BC is par [#permalink]
20 Jun 2018, 14:42
Please, see the explanation above. Regards
_________________
Get the 2 FREE GREPrepclub Tests



Manager
Joined: 27 Feb 2017
Posts: 150
Followers: 0
Kudos [?]:
40
[1]
, given: 15

Re: AB = DE, BC = CD, BE is parallel to CD, and BC is par [#permalink]
24 Jun 2018, 20:29
1
This post received KUDOS
pranab01 wrote: LethalMonkey wrote: and AB=DE = x
So quadrilateral ABDE is a square.
To be a square AB = AE has to be given. Not AB=DE.
Plz see the attached diagram, In the quadrilateral ABDE, we have AB = DE and angle A = angle E = 90 degree and the diagonal bisect each other at equal length . SO angle b = angle d = 90 Now the triangle ABF and triangle BDF are equal, since they both have the common same height i.e AB = BD. I still do not understand how is ABDE a square. How do we know AB=AE or AB = BD? All angles are 90 degrees, which means it can be a rectangle.



Intern
Joined: 16 Jul 2018
Posts: 4
Followers: 0
Kudos [?]:
5
[2]
, given: 0

Re: AB = DE, BC = CD, BE is parallel to CD, and BC is par [#permalink]
17 Jul 2018, 12:13
2
This post received KUDOS
We have no way of knowing whether quadrilateral BCDF is a square or not, we also have no way of knowing whether ABE is a 306090 triangle. Fortunately, these details don't matter. Observe:
The area of triangle ABE is \(\frac{AB*AE}{2}\). Now, note that AB=DE and since CD  BE and BC  DF, we must have BC = BF = DF = CD. We can then infer that CF projects orthogonally down onto AE, meaning its length is the same as DE which forms a right angle with AE. Thus, CF = DE = AB. We then can subdivide the quadrilateral BCDF into four equal sized right triangles each with base \(\frac{AE}{2}\) and height \(\frac{AB}{2}\), giving each an area of \(\frac{AE*AB}{8}\). We then multiply this quantity by four to get \(\frac{AB*AE}{2}\), the same as the area of triangle ABE.



Director
Joined: 20 Apr 2016
Posts: 743
Followers: 6
Kudos [?]:
500
[1]
, given: 86

Re: AB = DE, BC = CD, BE is parallel to CD, and BC is par [#permalink]
19 Jul 2018, 19:10
1
This post received KUDOS
garaidh wrote: We have no way of knowing whether quadrilateral BCDF is a square or not, we also have no way of knowing whether ABE is a 306090 triangle. Fortunately, these details don't matter. Observe:
The area of triangle ABE is \(\frac{AB*AE}{2}\). Now, note that AB=DE and since CD  BE and BC  DF, we must have BC = BF = DF = CD. We can then infer that CF projects orthogonally down onto AE, meaning its length is the same as DE which forms a right angle with AE. Thus, CF = DE = AB. We then can subdivide the quadrilateral BCDF into four equal sized right triangles each with base \(\frac{AE}{2}\) and height \(\frac{AB}{2}\), giving each an area of \(\frac{AE*AB}{8}\). We then multiply this quantity by four to get \(\frac{AB*AE}{2}\), the same as the area of triangle ABE. Hi, Could you plz let me know how you have proved BC = BF = DF = CD as only AB=DE and since CD  BE and BC  DF is mentioned? Moreover can we really infer " that CF projects orthogonally down onto AE "? unless BCDF is a rhombus,square,parallelogram
_________________
If you found this post useful, please let me know by pressing the Kudos Button



Intern
Joined: 16 Jul 2018
Posts: 4
Followers: 0
Kudos [?]:
5
[1]
, given: 0

Re: AB = DE, BC = CD, BE is parallel to CD, and BC is par [#permalink]
20 Jul 2018, 06:24
1
This post received KUDOS
pranab01 wrote: garaidh wrote: We have no way of knowing whether quadrilateral BCDF is a square or not, we also have no way of knowing whether ABE is a 306090 triangle. Fortunately, these details don't matter. Observe:
The area of triangle ABE is \(\frac{AB*AE}{2}\). Now, note that AB=DE and since CD  BE and BC  DF, we must have BC = BF = DF = CD. We can then infer that CF projects orthogonally down onto AE, meaning its length is the same as DE which forms a right angle with AE. Thus, CF = DE = AB. We then can subdivide the quadrilateral BCDF into four equal sized right triangles each with base \(\frac{AE}{2}\) and height \(\frac{AB}{2}\), giving each an area of \(\frac{AE*AB}{8}\). We then multiply this quantity by four to get \(\frac{AB*AE}{2}\), the same as the area of triangle ABE. Hi, Could you plz let me know how you have proved BC = BF = DF = CD as only AB=DE and since CD  BE and BC  DF is mentioned? Moreover can we really infer " that CF projects orthogonally down onto AE "? unless BCDF is a rhombus,square,parallelogram Certainly. Since AB=DE, CD  BE, and BC  DF, we have BC=CF=DF=CD due to the statement "If two parallel lines intersect two parallel lines, each of the resulting segments will be equal to their opposite." This is equivalent to the Euclidean parallel postulate (which we are allowed to assume on all GRE questions). It should not be two hard to prove this or find a proof of this if you are unconvinced, but it should make sense intuitively because if it were the case that BF > DF, we would necessarily have BF (BE) intersecting CD, which is impossible by assumption CD  BE. Thus it must be the case that BC = DF and BF = CD and since we know BC = CD, we have by transitivity of equality that BF = DF (that is, they are all equal to each other). As for your second question, we do know that BCDF is a parallelogram because CD  BF and BC  DF. Furthermore, since we know by the above reasoning that CD=DF, if we were to draw a circle of radius CD centered at D, it would intersect both C and F. We can then draw another circle of the same radius centered at B, which will also intersect C and F. You might recall that this is the construction of a perpendicular to BD. Now, we know that AB  DE and that AB=DE. We then have that BD  AE (again by statement equivalent to Euclid's Parallel Postulate), thus CF must be perpendicular with AE. We have CF  DE because both make right angles with AE and both intersect the parallel lines BE and CD. Then by Euclid's Fifth, we have CF=DE.



Director
Joined: 20 Apr 2016
Posts: 743
Followers: 6
Kudos [?]:
500
[1]
, given: 86

Re: AB = DE, BC = CD, BE is parallel to CD, and BC is par [#permalink]
20 Jul 2018, 10:26
1
This post received KUDOS
garaidh wrote: Certainly. Since AB=DE, CD  BE, and BC  DF, we have BC=CF=DF=CD due to the statement "If two parallel lines intersect two parallel lines, each of the resulting segments will be equal to their opposite." This is equivalent to the Euclidean parallel postulate (which we are allowed to assume on all GRE questions). It should not be two hard to prove this or find a proof of this if you are unconvinced, but it should make sense intuitively because if it were the case that BF > DF, we would necessarily have BF (BE) intersecting CD, which is impossible by assumption CD  BE. Thus it must be the case that BC = DF and BF = CD and since we know BC = CD, we have by transitivity of equality that BF = DF (that is, they are all equal to each other).
As for your second question, we do know that BCDF is a parallelogram because CD  BF and BC  DF. Furthermore, since we know by the above reasoning that CD=DF, if we were to draw a circle of radius CD centered at D, it would intersect both C and F. We can then draw another circle of the same radius centered at B, which will also intersect C and F. You might recall that this is the construction of a perpendicular to BD. Now, we know that AB  DE and that AB=DE. We then have that BD  AE (again by statement equivalent to Euclid's Parallel Postulate), thus CF must be perpendicular with AE. We have CF  DE because both make right angles with AE and both intersect the parallel lines BE and CD. Then by Euclid's Fifth, we have CF=DE.
HI, As per Euclidean parallel postulate, the distance between two parallel lines at point will always be equal, so yes we can concur that CD =BF and BC = FD, but since BC = CD, we can write as BC = CD = DF = FB, This led us that BCDF is a rhombus, moreover the diagonal bisect each perpendicularly so CF and BD will be perpendicular and if we consider two triangles BCD and BDF, they will always have equal area. The only confusion with the statement CF  DE, However I approached a different way, SInce AB  DE and BD  BE also AB= DE and BD = BE (Euclidean parallel postulate), so ABDE is a parallelogram and the diagonals of the parallelogram divides it into 4 triangles of equal area.
_________________
If you found this post useful, please let me know by pressing the Kudos Button




Re: AB = DE, BC = CD, BE is parallel to CD, and BC is par
[#permalink]
20 Jul 2018, 10:26





