It is currently 25 Mar 2019, 08:46
My Tests


GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

for You

we will pick new questions that match your level based on your Timer History

Your Progress

every week, we’ll send you an estimated GMAT score based on your performance


we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

200^200 * 40^40

  Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
User avatar
Joined: 18 Apr 2015
Posts: 5909
Followers: 96

Kudos [?]: 1156 [0], given: 5484

CAT Tests
200^200 * 40^40 [#permalink] New post 22 Mar 2018, 12:28
Expert's post

Question Stats:

66% (02:37) correct 33% (02:16) wrong based on 12 sessions
\(\frac{200^{200} 40^{40}}{20^{20}400^{400}}\)

A. \(\frac{1}{2^{920}5^{380}}\)

B. \(\frac{1}{2^{240}5^{240}}\)

C. \(\frac{1}{2^{180}5^{180}}\)

D. \(1\)

E. \(2^{180}5^{180}\)
[Reveal] Spoiler: OA


Get the 2 FREE GREPrepclub Tests

1 KUDOS received
User avatar
Joined: 15 Jan 2018
Posts: 147
Followers: 3

Kudos [?]: 182 [1] , given: 0

Re: 200^200 * 40^40 [#permalink] New post 22 Mar 2018, 18:58
This post received
It's always good when practicing to consider guessing strategies. With this problem, we see 3 answer choices that are very small, one that is 1, and another that is quite large. This disparity means that guessing is a possibility, at least partially. Notice that the largest base, 400, also has the largest exponent, 400. This number will certainly dominate all the others, and since it's in the denominator, we at least know that the answer will be less than 1, eliminating D and E.

Let's actually solve this thing. Anytime you see numbers with huge exponents, it's a good thought to break them down to their primes so we can cancel as quickly and easily as possible. And anytime you see numbers ending with zeroes, you can think of each zero as a factor of 10, but more usefully as factors of 2 and 5. So each of these bases (200, 40, 20, and 400) can be broken down into various combinations of 2s and 5s. We could thus break down each into its 2s and 5s and then apply the exponent to each of them and then see how many cancel out. However, notice that each answer choice shows different exponents for each of the 2s. This tells us that we don't even need the 5s. So let's determine how many 2s are factors in each term and leave it at that.

For 200^200, we know the base ends in two 0s, each of which can be thought of as a 5 and a 2. So that's two 2s so far. Add one more 2 since the whole thing starts with a 2, so we know that 200 has three 2s in its prime factorization. If we rewrite it, it would look like this: (2x2x2x5x5)^200. Ignoring the 5s, we get 2^600.

Similarly, the 40^40 can quickly be broken down into (2x2x2x5)^40, giving us 2^120.

In the denominator, we have 20^20, breaking down into (2x2x5)^20 and giving us 2^40, and 400^400, breaking down into (2x2x2x2x5x5)^400, giving us 2^1600.

To recap, ignoring the 5s, we have (2^600x2^120)/(2^40x2^1600). I'd cancel the exponent of 600 with the exponent of 1600, leaving a 2^1000 in the denominator, and cancel the exponent of 120 with the exponent of 40, leaving 2^80 in the numerator. At this point we have 2^80/2^1000, which leaves us with 1/2^920. Note that only answer choice A has this in it, so the answer must be A, and we never had to deal with the 5s.


Need help with GRE math? Check out our ground-breaking books and app.

Re: 200^200 * 40^40   [#permalink] 22 Mar 2018, 18:58
Display posts from previous: Sort by

200^200 * 40^40

  Question banks Downloads My Bookmarks Reviews Important topics  

GRE Prep Club Forum Home| About| Terms and Conditions and Privacy Policy| GRE Prep Club Rules| Contact

Powered by phpBB © phpBB Group

Kindly note that the GRE® test is a registered trademark of the Educational Testing Service®, and this site has neither been reviewed nor endorsed by ETS®.