 It is currently 25 Mar 2019, 08:46 ### GMAT Club Daily Prep

#### Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

#### Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here. # 200^200 * 40^40  Question banks Downloads My Bookmarks Reviews Important topics
Author Message
TAGS:
Moderator  Joined: 18 Apr 2015
Posts: 5909
Followers: 96

Kudos [?]: 1156 , given: 5484

200^200 * 40^40 [#permalink]
Expert's post 00:00

Question Stats: 66% (02:37) correct 33% (02:16) wrong based on 12 sessions
$$\frac{200^{200} 40^{40}}{20^{20}400^{400}}$$

A. $$\frac{1}{2^{920}5^{380}}$$

B. $$\frac{1}{2^{240}5^{240}}$$

C. $$\frac{1}{2^{180}5^{180}}$$

D. $$1$$

E. $$2^{180}5^{180}$$
[Reveal] Spoiler: OA

_________________ Manager  Joined: 15 Jan 2018
Posts: 147
GMAT 1: Q V
Followers: 3

Kudos [?]: 182  , given: 0

Re: 200^200 * 40^40 [#permalink]
1
KUDOS
It's always good when practicing to consider guessing strategies. With this problem, we see 3 answer choices that are very small, one that is 1, and another that is quite large. This disparity means that guessing is a possibility, at least partially. Notice that the largest base, 400, also has the largest exponent, 400. This number will certainly dominate all the others, and since it's in the denominator, we at least know that the answer will be less than 1, eliminating D and E.

Let's actually solve this thing. Anytime you see numbers with huge exponents, it's a good thought to break them down to their primes so we can cancel as quickly and easily as possible. And anytime you see numbers ending with zeroes, you can think of each zero as a factor of 10, but more usefully as factors of 2 and 5. So each of these bases (200, 40, 20, and 400) can be broken down into various combinations of 2s and 5s. We could thus break down each into its 2s and 5s and then apply the exponent to each of them and then see how many cancel out. However, notice that each answer choice shows different exponents for each of the 2s. This tells us that we don't even need the 5s. So let's determine how many 2s are factors in each term and leave it at that.

For 200^200, we know the base ends in two 0s, each of which can be thought of as a 5 and a 2. So that's two 2s so far. Add one more 2 since the whole thing starts with a 2, so we know that 200 has three 2s in its prime factorization. If we rewrite it, it would look like this: (2x2x2x5x5)^200. Ignoring the 5s, we get 2^600.

Similarly, the 40^40 can quickly be broken down into (2x2x2x5)^40, giving us 2^120.

In the denominator, we have 20^20, breaking down into (2x2x5)^20 and giving us 2^40, and 400^400, breaking down into (2x2x2x2x5x5)^400, giving us 2^1600.

To recap, ignoring the 5s, we have (2^600x2^120)/(2^40x2^1600). I'd cancel the exponent of 600 with the exponent of 1600, leaving a 2^1000 in the denominator, and cancel the exponent of 120 with the exponent of 40, leaving 2^80 in the numerator. At this point we have 2^80/2^1000, which leaves us with 1/2^920. Note that only answer choice A has this in it, so the answer must be A, and we never had to deal with the 5s.
_________________

-
-
-
-
-

Need help with GRE math? Check out our ground-breaking books and app. Re: 200^200 * 40^40   [#permalink] 22 Mar 2018, 18:58
Display posts from previous: Sort by

# 200^200 * 40^40  Question banks Downloads My Bookmarks Reviews Important topics Powered by phpBB © phpBB Group Kindly note that the GRE® test is a registered trademark of the Educational Testing Service®, and this site has neither been reviewed nor endorsed by ETS®.