fixzion wrote:
I cant solve this, can someone help?
Both \(a\) and \(b\) are fractions. Now you have to select values of a and b such that \(b>a\).
\(a= \frac{-1}{4}\) and \(b= \frac{1}{2}\).
Quantity A |
Quantity B |
\((\frac{a^2 \sqrt{b}}{\sqrt{a}})^2\) |
\(\frac{ab^5}{(\sqrt{b})^4}\) |
or
Quantity A |
Quantity B |
\((\frac{a^4 b}{a})\) |
\(\frac{ab^5}{b^2}\) |
or
Quantity A |
Quantity B |
\(a^3b\) |
\(ab^3\) |
\(a^3b=(\frac{-1}{4})^3\frac{1}{2}=\frac{-1}{128}\)
\(ab^3=\frac{-1}{4}(\frac{1}{2})^3=\frac{-1}{32}\).
A is the larger number.
_________________
Sandy
If you found this post useful, please let me know by pressing the Kudos Button
Try our free Online GRE Test